Структура периодической системы. Периодическая система химических элементов менделеева

Гениального русского химика Д. И. Менделеева всю жизнь отличало стремление к познанию неведомого. Это стремление, а также глубочайшие и обширнейшие знания в сочетании с безошибочной научной интуицией и позволили Дмитрию Ивановичу разработать научную классификацию химических элементов - Периодическую систему в форме его знаменитой таблицы.

Периодическую систему химических элементов Д. И. Менделеева можно представить в виде большого дома, в котором «дружно живут» абсолютно все химические элементы, известные человеку. Чтобы уметь пользоваться Периодической системой, необходимо изучить химический алфавит, т. е. знаки химических элементов.

С их помощью вы научитесь писать слова - химические формулы, а на их основе сможете записывать предложения - уравнения химических реакций. Каждый химический элемент обозначают собственным химическим знаком, или символом, который наряду с названием химического элемента записан в таблице Д. И. Менделеева. качестве символов по предложению шведского химика Й. Берцелиуса были приняты в большинстве случаев начальные буквы латинских названий химических элементов. Так, водород (латинское название Hydrogenium - гидрогениум) обозначают буквой Н (читают «аш»), кислород (латинское название Oxygenium - оксигениум) - буквой О (читают «о»), углерод (латинское название Сarboneum - карбонеум) - буквой С (читают «цэ»).

На букву С начинаются латинские названия ещё нескольких химических элементов: кальция (

Calcium), меди (Cuprum), кобальта (Cobaltum) и др. Чтобы их различить, И. Берцелиус предложил к начальной букве латинского названия добавлять ещё одну из последующих букв названия. Так, химический знак кальция записывают символом Са (читают «кальций»), меди - Сu (читают «купрум»), кобальта - Со (читают «кобальт»).

В названиях одних химических элементов отражены важнейшие свойства элементов, например, водород - рождающий воду, кислород - рождающий кислоты, фосфор - несущий свет (рис. 20) и т. д.

Рис. 20.
Этимология названия элемента № 15 Периодической системы Д. И. Менделеева

Другие элементы названы в честь небесных тел или планет Солнечной системы - селен и теллур (рис. 21) (от греч. Селена - Луна и Теллурис - Земля), уран, нептуний, плутоний.

Рис. 21.
Этимология названия элемента № 52 Периодической системы Д. И. Менделеева

Отдельные названия заимствованы из мифологии (рис. 22). Например, тантал. Так звали любимого сына Зевса. За преступления перед богами Тантал был сурово наказан. Он стоял по горло в воде, и над ним свисали ветви с сочными, ароматными плодами. Однако едва он хотел напиться, как вода утекала от него, едва желал утолить голод и протягивал руку к плодам - ветви отклонялись в сторону. Пытаясь выделить тантал из руд, химики испытали не меньше мучений.

Рис. 22.
Этимология названия элемента № 61 Периодической системы Д. И. Менделеева

Некоторые элементы были названы в честь различных государств или частей света. Например, германий, галлий (Галлия - старинное название Франции), полоний (в честь Польши), скандий (в честь Скандинавии), франций, рутений (Рутения - латинское название России), европий и америций. Вот элементы, названные в честь городов: гафний (в честь Копенгагена), лютеций (в старину Париж называли Лютеций), берклий (в честь города Беркли в США), иттрий, тербий, эрбий, иттербий (названия этих элементов происходят от Иттерби - маленького города в Швеции, где впервые был обнаружен минерал, содержащий эти элементы), дубний (рис. 23).

Рис. 23.
Этимология названия элемента № 105 Периодической системы Д. И. Менделеева

Наконец, в названиях элементов увековечены имена великих учёных: кюрий, фермий, эйнштейний, менделевий (рис. 24), лоуренсий.

Рис. 24.
Этимология названия элемента № 101 Периодической системы Д. И. Менделеева

Каждому химическому элементу отведена в таблице Менделеева, в общем «доме» всех элементов, своя «квартира» - клетка со строго определённым номером. Глубокий смысл этого номера вам раскроется при дальнейшем изучении химии. Так же строго распределена и этажность этих «квартир» - периоды, в которых «живут» элементы. Как и порядковый номер элемента (номер «квартиры»), номер периода («этажа») таит в себе важнейшую информацию о строении атомов химических элементов. По горизонтали - «этажности» - Периодическая система делится на семь периодов:

  • 1-й период включает в себя два элемента: водород Н и гелий Не;
  • 2-й период начинается литием Li и оканчивается неоном Ne (8 элементов);
  • 3-й период начинается натрием Na и оканчивается аргоном Аг (8 элементов).

Три первых периода, состоящие каждый из одного ряда, называют малыми периодами.

Периоды 4, 5 и 6-й включают по два ряда элементов, их называют большими периодами; 4-й и 5-й периоды содержат по 18 элементов, 6-й - 32 элемента.

7-й период - незаконченный, состоит пока только из одного ряда.

Обратите внимание на «подвальные этажи» Периодической системы - там «живут» по 14 элементов-близнецов, похожие по своим свойствам одни на лантан La, другие на актиний Ас, которые представляют их на верхних «этажах» таблицы: в 6-м и 7-м периодах.

По вертикали химические элементы, «живущие» в сходных по свойствам «квартирах», располагаются друг под другом в вертикальных столбцах - группах, которых в таблице Д. И. Менделеева восемь.

Каждая группа состоит из двух подгрупп - главной и побочной. Подгруппу, в которую входят элементы и малых, и больших периодов, называют главной подгруппой или группой А. Подгруппу, в которую входят элементы только больших периодов, называют побочной подгруппой или группой В. Так, в главную подгруппу I группы (IA группы) входят литий, натрий, калий, рубидий и франций - это подгруппа лития Li; побочная подгруппа этой группы (IB группы) образована медью, серебром и золотом - это подгруппа меди Си.

Кроме формы таблицы Д. И. Менделеева, которая называется короткопериодной (она приведена на форзаце учебника), существует множество других форм, например длиннопериодный вариант.

Подобно тому как из элементов игры «Лего» ребёнок может сконструировать огромное количество различных предметов (см. рис. 10), так и из химических элементов природа и человек создали окружающее нас многообразие веществ. Ещё нагляднее другая модель: подобно тому как 33 буквы русского алфавита образуют различные комбинации, десятки тысяч слов, так и 114 химических элементов в различных сочетаниях создают более 20 миллионов различных веществ.

Постарайтесь усвоить закономерности образования слов - химических формул, и тогда мир веществ откроется перед вами во всём своём красочном многообразии.

Но для этого вначале выучите буквы - символы химических элементов (табл. 1).

Таблица 1
Названия некоторых химических элементов

Ключевые слова и словосочетания

  1. Периодическая система химических элементов (таблица) Д. И. Менделеева.
  2. Периоды большие и малые.
  3. Группы и подгруппы - главная (А группа) и побочная (В группа).
  4. Символы химических элементов.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Пользуясь словарями (этимологическим, энциклопедическим и химических терминов), назовите важнейшие свойства, которые отражены в названиях химических элементов: бром Вr, азот N, фтор F.
  2. Объясните, как в названии химических элементов титана и ванадия отражено влияние древнегреческих мифов.
  3. Почему латинское название золота Aurum (аурум), а серебра - Argentum (аргентум)?
  4. Расскажите историю открытия какого-либо (по вашему выбору) химического элемента и объясните этимологию его названия.
  5. Запишите «координаты», т. е. положение в Периодической системе Д. И. Менделеева (номер элемента, номер периода и его вид - большой или малый, номер группы и подгруппа - главная или побочная), для следующих химических элементов: кальций, цинк, сурьма, тантал, европий.
  6. Распределите химические элементы, перечисленные в таблице 1, на три группы по признаку «произношение химического символа». Может ли выполнение этого задания помочь вам в запоминании химических символов и произношении символов элементов?

На этом уроке вы узнаете о Периодическом законе Менделеева, который описывает изменение свойств простых тел, а также формы и свойства соединений элементов в зависимости от величины их атомных масс. Рассмотрите, как по положению в Периодической системе можно описать химический элемент.

Тема: Периодический закон и Периодическая система химических элементов Д. И. Менделеева

Урок: Описание элемента по положению в Периодической системе элементов Д. И. Менделеева

В 1869 году Д.И.Менделеев на основе данных накопленных о химических элементах сформулировал свой периодический закон. Тогда он звучал так: « Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных масс элементов». Очень долго физический смысл закона Д.И.Менделеева был непонятен. Всё встало на свои места после открытия в XX веке строения атома.

Современная формулировка периодического закона: « Свойства простых веществ, также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома».

Заряд ядра атома равен числу протонов в ядре. Число протонов уравновешивается числом электронов в атоме. Таким образом, атом электронейтрален.

Заряд ядра атома в Периодической таблице - это порядковый номер элемента.

Номер периода показывает число энергетических уровней, на которых вращаются электроны.

Номер группы показывает число валентных электронов. Для элементов главных подгрупп число валентных электронов равно числу электронов на внешнем энергетическом уровне. Именно валентные электроны отвечают за образование химических связей элемента.

Химические элементы 8 группы - инертные газы имеют на внешней электронной оболочке 8 электронов. Такая электронная оболочка энергетически выгодна. Все атомы стремятся заполнить свою внешнюю электронную оболочку до 8 электронов.

Какие же характеристики атома меняются в Периодической системе периодически?

Повторяется строение внешнего электронного уровня.

Периодически меняется радиус атома. В группе радиус увеличивается с увеличением номера периода, так как увеличивается число энергетических уровней. В периоде слева направо будет происходить рост атомного ядра, но притяжение к ядру будет больше и поэтому радиус атома уменьшается .

Каждый атом стремится завершить последний энергетический уровень У элементов 1 группы на последнем слое 1 электрон. Поэтому им легче его отдать. А элементам 7 группы легче притянуть 1 недостающий до октета электрон. В группе способность отдавать электроны будет увеличиваться сверху вниз, так ка увеличивается радиус атома и притяжение к ядру меньше. В периоде слева направо способность отдавать электроны уменьшается, потому что уменьшается радиус атома.

Чем легче элемент отдает электроны с внешнего уровня, тем большими металлическими свойствами он обладает, а его оксиды и гидроксиды обладают большими основными свойствами. Значит, металлические свойства в группах увеличиваются сверху вниз, а в периодах справа налево. С неметаллическими свойствами все наоборот.

Рис. 1. Положение магния в таблице

В группе магний соседствует с бериллием и кальцием. Рис.1. Магний стоит ниже, чем бериллий, но выше кальция в группе. У магния больше металлические свойства, чем у бериллия, но меньше чем у кальция. Основные свойства его оксидов и гидроксидов изменяются также. В периоде натрий стоит левее, а алюминий правее магния. Натрий будет проявлять больше металлические свойства, чем магний, а магний больше, чес алюминий. Таким образом, можно сравнить любой элемент с соседями его по группе и периоду.

Кислотные и неметаллические свойства изменяются противоположно основным и металлическим свойствам.

Характеристика хлора по его положению в периодической системе Д.И.Менделеева.

Рис. 4. Положение хлора в таблице

. Значение порядкового номера 17 показывает число протонов17 и электронов17 в атоме. Рис.4. Атомная масса 35 поможет вычислить число нейтронов (35-17 = 18). Хлор находится в третьем периоде, значит число энергетических уровней в атоме равно 3. Стоит в 7 -А группе, относится к р- элементам. Это неметалл. Сравниваем хлор с его соседями по группе и по периоду. Неметаллические свойства хлора больше чем у серы, но меньше, чем у аргона. Хлор об-ла-да-ет мень-ши-ми неме-тал-ли-че-ски-ми свой-ства-ми, чем фтор и боль-ши-ми чем бром. Распределим электроны по энергетическим уровням и напишем электронную формулу. Общее распределение электронов будет иметь такой вид. См.Рис. 5

Рис. 5. Распределение электронов атома хлора по энергетическим уровням

Определяем высшую и низшую степень окисления хлора. Высшая степень окисления равна +7, так как он может отдать с последнего электронного слоя 7 электронов. Низшая степень окисления равна -1, потому что хлору до завершения необходим 1 электрон. Формула высшего оксида Cl 2 O 7 (кислотный оксид), водородного соединения HCl.

В процессе отдачи или присоединения электронов атом приобретает условный заряд . Этот условный заряд называется .

- Простые вещества обладают степенью окисления равной нулю.

Элементы могут проявлять максимальную степень окисления и минимальную . Максимальную степень окисления элемент проявляет тогда, когда отдает все свои валентные электроны с внешнего электронного уровня. Если число валентных электронов равно номеру группы, то и максимальная степень окисления равна номеру группы.

Рис. 2. Положение мышьяка в таблице

Минимальную степень окисления элемент будет проявлять тогда, когда он примет все возможные электроны для завершения электронного слоя.

Рассмотрим на примере элемента №33 значения степеней окисления.

Это мышьяк As.Он находится в пятой главной подгруппе.Рис.2. На последнем электронном уровне у него пять электронов. Значит, отдавая их, он будет иметь степень окисления +5. До завершения электронного слоя атому As не хватает 3 электрона. Притягивая их, он будет иметь степень окисления -3.

Положение элементов металлов и неметаллов в Периодической системе Д.И. Менделеева.

Рис. 3. Положение металлов и неметаллов в таблице

В побочных подгруппах находятся все металлы . Если мысленно провести диагональ от бора к астату , то выше этой диагонали в главных подгруппах будут все неметаллы , а ниже этой диагонали - все металлы . Рис.3.

1. №№ 1-4 (с.125) Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2011 г.176с.:ил.

2. Какие характеристики атома изменяются периодичности?

3. Дайте характеристику химического элемента кислорода по его положению в Периодической системе Д.И.Менделеева.

Графическим отображением периодического закона является Периодическая система химических элементов. Известно более \(700\) форм периодической таблицы. Официальным по решению Международного союза химиков является её полудлинный вариант.

Каждому химическому элементу в таблице отведена одна клеточка, в которой указаны символ и название элемента, порядковый номер и относительная атомная масса.

Ломаная линия обозначает границу между металлами и неметаллами.

Последовательность расположения элементов не всегда совпадает с возрастанием атомной массы. Есть несколько исключений из правила. Так, относительная атомная масса аргона меньше атомной массы калия, в теллура - меньше, чем иода.

Каждый элемент имеет свой порядковый (атомный) номер , располагается в определённом периоде и определённой группе.

Период - горизонтальный ряд химических элементов, начинающийся щелочным металлом (или водородом) и заканчивающийся инертным (благородным) газом.

В таблице семь периодов. В каждом содержится определённое число элементов:

\(1\)-й период - \(2\) элемента,

\(2\)-й период - \(8\) элементов,

\(3\)-й период - \(8\) элементов,

\(4\)-й период - \(18\) элементов,

\(5\)-й период - \(18\) элементов,

\(6\)-й период - \(32\) элемента (\(18 + 14\)),

\(7\)-й период - \(32\) элемента (\(18 + 14\)).

Три первых периода называют малыми периодами, остальные - большими . И в малых, и в больших периодах происходит постепенное ослабление металлических свойств и усиление неметаллических , только в больших периодах оно происходит более плавно.

Элементы с порядковыми номерами \(58\)–\(71\) (лантаноиды ) и \(90\)–\(103\) (актиноиды ) вынесены из таблицы и располагаются под ней. Это элементы IIIB группы. Лантаноиды относятся к шестому периоду, а актиноиды - к седьмому .

Восьмой период появится в Периодической таблице, когда будут открыты новые элементы.

Группа - вертикальный столбец химических элементов, имеющих сходные свойства.

В Периодической таблице \(18\) групп, пронумерованных арабскими цифрами. Часто используют нумерацию римскими цифрами с добавлением букв \(A\) или \(B\). В таком случае групп \(8\).

Группы \(A\) начинаются элементами малых периодов, включают также и элементы больших периодов; содержат и металлы, и неметаллы. В коротком варианте Периодической таблицы это главные подгруппы .

Группы \(B\) содержат элементы больших периодов, и это только металлы. В коротком варианте Периодической таблицы это побочные подгруппы .

Число элементов в группах:

IA , VIIIA - по \(7\) элементов;

IIA - VIIA - по \(6\) элементов;

IIIB - \(32\) элемента (\(4 + 14\) лантаноидов \(+ 14\) актиноидов);

VIIIB - \(12\) элементов;

IB , IIB , IVB - VIIB - по \(4\) элемента.

Количественный состав групп будет изменяться по мере добавления в таблицу новых элементов.

Римский номер группы, как правило, показывает высшую валентность в оксидах. Но для некоторых элементов это правило не выполняется. Так, фтор не бывает семивалентным, а кислород - шестивалентным. Не проявляют валентность, равную номеру группы,гелий , неон и аргон - эти элементы не образуют соединений с кислородом. Медь бывает двухвалентной, а золото - трёхвалентным, хотя это элементы первой группы.

В природе существует очень много повторяющихся последовательностей:

  • времена года;
  • время суток;
  • дни недели…

В середине 19 века Д.И.Менделеев заметил, что химические свойства элементов также имеют определенную последовательность (говорят, что эта идея пришла ему во сне). Итогом чудесных сновидений ученого стала Периодическая таблица химических элементов, в которой Д.И. Менделеев выстроил химические элементы по возрастанию атомной массы. В современной таблице химические элементы выстроены по возрастанию атомного номера элемента (количество протонов в ядре атома).

Атомный номер изображен над символом химического элемента, под символом - его атомная масса (сумма протонов и нейтронов). Обратите внимание, что атомная масса у некоторых элементов является нецелым числом! Помните об изотопах! Атомная масса - это средневзвешенное от всех изотопов элемента, встречающихся в природе в естественных условиях.

Под таблицей расположены лантаноиды и актиноиды.

Металлы, неметаллы, металлоиды


Расположены в Периодической таблице слева от ступенчатой диагональной линии, которая начинается с Бора (В) и заканчивается полонием (Po) (исключение составляют германий (Ge) и сурьма (Sb). Нетрудно заметить, что металлы занимают бОльшую часть Периодической таблицы. Основные свойства металлов: твердые (кроме ртути); блестят; хорошие электро- и теплопроводники; пластичные; ковкие; легко отдают электроны.

Элементы, расположенные справа от ступенчатой диагонали B-Po, называются неметаллами . Свойства неметаллов прямо противоположны свойствам металлов: плохие проводники тепла и электричества; хрупкие; нековкие; непластичные; обычно принимают электроны.

Металлоиды

Между металлами и неметаллами находятся полуметаллы (металлоиды). Для них характерны свойства как металлов, так и неметаллов. Основное применение в промышленности полуметаллы нашли в производстве полупроводников, без которых немыслима ни одна современная микросхема или микропроцессор.

Периоды и группы

Как уже говорилось выше, периодическая таблица состоит из семи периодов. В каждом периоде атомные номера элементов увеличиваются слева направо.

Свойства элементов в периодах изменяются последовательно: так натрий (Na) и магний (Mg), находящиеся в начале третьего периода, отдают электроны (Na отдает один электрон: 1s 2 2s 2 2p 6 3s 1 ; Mg отдает два электрона: 1s 2 2s 2 2p 6 3s 2). А вот хлор (Cl), расположенный в конце периода, принимает один элемент: 1s 2 2s 2 2p 6 3s 2 3p 5 .

В группах же, наоборот, все элементы обладают одинаковыми свойствами. Например, в группе IA(1) все элементы, начиная с лития (Li) и заканчивая францием (Fr), отдают один электрон. А все элементы группы VIIA(17), принимают один элемент.

Некоторые группы настолько важны, что получили особые названия. Эти группы рассмотрены ниже.

Группа IA(1) . Атомы элементов этой группы имеют во внешнем электронном слое всего по одному электрону, поэтому легко отдают один электрон.

Наиболее важные щелочные металлы - натрий (Na) и калий (K), поскольку играют важную роль в процессе жизнедеятельности человека и входят в состав солей.

Электронные конфигурации:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Группа IIA(2) . Атомы элементов этой группы имеют во внешнем электронном слое по два электрона, которые также отдают во время химических реакций. Наиболее важный элемент - кальций (Ca) - основа костей и зубов.

Электронные конфигурации:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Группа VIIA(17) . Атомы элементов этой группы обычно получают по одному электрону, т.к. на внешнем электронном слое находится по пять элементов и до "полного комплекта" как раз не хватает одного электрона.

Наиболее известные элементы этой группы: хлор (Cl) - входит в состав соли и хлорной извести; йод (I) - элемент, играющий важную роль в деятельности щитовидной железы человека.

Электронная конфигурация:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Группа VIII(18). Атомы элементов этой группы имеют полностью "укомплектованный" внешний электронный слой. Поэтому им "не надо" принимать электроны. И отдавать их они "не хотят". Отсюда - элементы этой группы очень "неохотно" вступают в химические реакции. Долгое время считалось, что они вообще не вступают в реакции (отсюда и название "инертный", т.е. "бездействующий"). Но химик Нейл Барлетт открыл, что некоторые из этих газов при определенных условиях все же могут вступать в реакции с другими элементами.

Электронные конфигурации:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Валентные элементы в группах

Нетрудно заметить, что внутри каждой группы элементы похожи друг на друга своими валентными электронами (электроны s и p-орбиталей, расположенных на внешнем энергетическом уровне).

У щелочных металлов - по 1 валентному электрону:

  • Li - 1s 2 2s 1 ;
  • Na - 1s 2 2s 2 2p 6 3s 1 ;
  • K - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

У щелочноземельных металлов - по 2 валентных электрона:

  • Be - 1s 2 2s 2 ;
  • Mg - 1s 2 2s 2 2p 6 3s 2 ;
  • Ca - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

У галогенов - по 7 валентных электронов:

  • F - 1s 2 2s 2 2p 5 ;
  • Cl - 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

У инертных газов - по 8 валентных электронов:

  • Ne - 1s 2 2s 2 2p 6 ;
  • Ar - 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Дополнительную информацию см. в статье Валентность и в Таблице электронных конфигураций атомов химических элементов по периодам .

Обратим теперь свое внимание на элементы, расположенные в группах с символов В . Они расположены в центре периодической таблицы и называются переходными металлами .

Отличительной особенностью этих элементов является присутствие в атомах электронов, заполняющих d-орбитали :

  1. Sc - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ;
  2. Ti - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2

Отдельно от основной таблицы расположены лантаноиды и актиноиды - это, так называемые, внутренние переходные металлы . В атомах этих элементов электроны заполняют f-орбитали :

  1. Ce - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 1 5d 1 6s 2 ;
  2. Th - 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 14 5d 10 6s 2 6p 6 6d 2 7s 2

Девятнадцатый век в истории человечества - век, в который многие науки реформировались, в том числе и химия. Именно в это время появилась периодическая система Менделеева, а вместе с ней - и периодический закон. Именно он стал основой современной химии. Периодическая система Д. И. Менделеева представляет собой систематизацию элементов, которая устанавливает зависимость химических и физических свойств от строения и заряда атома вещества.

История

Начало периодической положила книга «Соотношение свойств с атомным весом элементов», написанная в третьей четверти XVII века. В ней были отображены основные понятия относительно известных химических элементов (на тот момент их насчитывалось всего 63). К тому же у многих из них атомные массы были определены неправильно. Это сильно мешало открытию Д. И. Менделеева.

Дмитрий Иванович начал свою работу со сравнения свойств элементов. В первую очередь он занялся хлором и калием, а уж потом перешёл к работе со щелочными металлами. Вооружась специальными карточками, на которых были изображены химические элементы, он многократно пытался собрать эту «мозаику»: раскладывал на своем столе в поисках нужных комбинаций и совпадений.

После долгих стараний Дмитрий Иванович все же нашёл ту закономерность, которую искал, и выстроил элементы в периодические ряды. Получив в результате пустые ячейки между элементами, учёный понял, что русским исследователям известны не все химические элементы, и что именно он должен дать этому миру те знания в области химии, которые ещё не были даны его предшественниками.

Всем известен миф о том, что Менделееву периодическая таблица явилась во сне, и он по памяти собрал элементы в единую систему. Это, грубо говоря, ложь. Дело в том, что Дмитрий Иванович довольно долго и сосредоточенно работал над своим трудом, и его это сильно выматывало. Во время работы над системой элементов Менделеев однажды заснул. Проснувшись, он понял, что не закончил таблицу, и скорее продолжил заполнение пустых ячеек. Его знакомый, некий Иностранцев, университетский педагог, решил, что таблица Менделееву приснилась во сне и распространил данный слух среди своих студентов. Так и появилась данная гипотеза.

Известность

Химических элементов Менделеева является отображением созданного Дмитрием Ивановичем ещё в третьей четверти XIX века (1869 год) периодического закона. Именно в 1869 году на заседании русского химического сообщества было зачитано уведомление Менделеева о создании им определённой структуры. И в этом же году была выпущена книга «Основы химии», в которой впервые была опубликована периодическая система химических элементов Менделеева. А в книге «Естественная система элементов и использование её к указанию качеств неоткрытых элементов» Д. И. Менделеев впервые упомянул понятие «периодический закон».

Структура и правила размещения элементов

Первые шаги в создании периодического закона были сделаны Дмитрием Ивановичем еще в 1869-1871 годах, в то время он усиленно работал над установлением зависимости свойств данных элементов от массы их атома. Современный вариант представляет собой сведённые в двумерную таблицу элементы.

Положение элемента в таблице несёт определённый химический и физический смысл. По местонахождению элемента в таблице можно узнать, какая у него валентность, определить и другие химические особенности. Дмитрий Иванович пытался установить связь между элементами, как сходными между собой по свойствам, так и отличающимися.

В основу классификации известных на тот момент химических элементов он положил валентность и атомную массу. Сопоставляя относительные свойства элементов, Менделеев пытался найти закономерность, которая объединила бы все известные химические элементы в одну систему. Расположив их, основываясь на возрастании атомных масс, он всё-таки добился периодичности в каждом из рядов.

Дальнейшее развитие системы

Появившаяся в 1969 году таблица Менделеева ещё не раз дорабатывалась. С появлением благородных газов в 1930 годах получилось выявить новейшую зависимость элементов - не от массы, а от порядкового номера. Позднее удалось установить число протонов в атомных ядрах, и оказалось, что оно совпадает с порядковым номером элемента. Учёными XX века было изучено электронное Оказалось, что и оно влияет на периодичность. Это сильно меняло представления о свойствах элементов. Данный пункт был отражён в более поздних редакциях периодической системы Менделеева. Каждое новое открытие свойств и особенностей элементов органично вписывалось в таблицу.

Характеристики периодической системы Менделеева

Таблица Менделеева поделена на периоды (7 строк, расположенных горизонтально), которые, в свою очередь, подразделяются на большие и малые. Начинается период со щелочного металла, а заканчивается элементом с неметаллическими свойствами.
Вертикально таблица Дмитрия Ивановича поделена на группы (8 столбцов). Каждая из них в периодической системе состоит из двух подгрупп, а именно - главной и побочной. После долгих споров по предложению Д. И. Менделеева и его коллеги У. Рамзая было решено ввести так называемую нулевую группу. В неё входят инертные газы (неон, гелий, аргон, радон, ксенон, криптон). В 1911 году учёным Ф. Содди было предложено поместить в периодической системе и неразличимые элементы, так называемые изотопы, - для них были выделены отдельные ячейки.

Несмотря на верность и точность периодической системы, научное общество долго не хотело признавать данное открытие. Многие великие учёные высмеивали деятельность Д. И. Менделеева и считали, что невозможно предсказать свойства элемента, который ещё не был открыт. Но после того как предполагаемые химические элементы были открыты (а это были, например, скандий, галлий и германий), система Менделеева и его периодический закон стали науки химии.

Таблица в современности

Периодическая система элементов Менделеева - основа большинства химических и физических открытий, связанных с атомно-молекулярным учением. Современное понятие элемента сложилось как раз благодаря великому учёному. Появление периодической системы Менделеева внесло кардинальные изменения в представления о различных соединениях и простых веществах. Создание ученым периодической системы оказало огромное влияние на развитие химии и всех наук, смежных с ней.