Зажимы эксцентриковые. Эксцентриковые зажимы Верхняя поперечная прижимная планка

В приспособлениях применяются два типа эксцентриковых механизмов:

1. Круговые эксцентрики.

2. Криволинейные эксцентрики.

Тип эксцентрика определяется формой кривой на рабочем участке.

Рабочая поверхность круговых эксцентриков – окружность постоянного диаметра со смещенной осью вращения. Расстояние между центром окружности и осью вращения эксцентрика называется эксцентриситетом (е ).

Рассмотрим схему кругового эксцентрика (Рис.5.19). Линия, проходящая через центр окружности О 1 и центр вращения О 2 кругового эксцентрика, делит его на два симметричных участка. Каждый из них это клин, расположенный на окружности, описанной из центра вращения эксцентрика. Угол подъема эксцентрика α (угол между зажимаемой поверхностью и нормалью к радиусу вращения) образуют радиус окружности эксцентрика R и радиус вращения r , проведенные из своих центров в точку касания с деталью.

Угол подъема рабочей поверхности эксцентрика определяется зависимостью

Эксцентриситет; - угол поворота эксцентрика.

Рисунок 5.19 – Расчетная схема эксцентрика

,

где - зазор для свободного ввода заготовки под эксцентрик (S 1 = 0,2 …0,4 мм); T – допуск на размер заготовки в направлении зажима; - запас хода эксцентрика, предохраняющий его от перехода через мертвую точку ( = 0,4…0, 6 мм); y – деформация в зоне контакта;

где Q –усилие в месте контакта эксцентрика; - жесткость зажимного устройства,

К недостаткам круговых эксцентриков относится изменение угла подъема α при повороте эксцентрика (следовательно, и усилия зажима). На рисунке 5.20 приведен профиль развертки рабочей поверхности эксцентрика при его повороте на угол ρ . В начальной стадии при ρ = 0° угол подъема α = 0°. При дальнейшем повороте эксцентрика угол α увеличивается, достигая максимума (α Мах) при ρ = 90°. Дальнейший поворот приводит к уменьшению угла α , и при ρ = 180° угол подъема снова равен нулю α =0°

Рис. 5.20 – Развертка эксцентрика.

Уравнения сил в круговом эксцентрике с достаточной для практических расчетов точностью можно записать, по аналогии с расчетом усилий плоского односкосого клина с углом в точке контакта. Тогда усилие на рукоятке длиной можно определить по формуле

,

где l – расстояние от оси вращения эксцентрика до точки приложения усилия W ; r – расстояние от оси вращения до точки контакта (Q ); - угол трения между эксцентриком и заготовкой; - угол трения на оси вращения эксцентрика.


Самоторможение круговых эксцентриков обеспечивается отношении его наружного диаметра D к эксцентриситету . Это отношение называют характеристикой эксцентрика.

Круглые эксцентрики изготавливают из стали 20Х, цементируют на глубину 0,8…1,2 мм и затем закаливают до твердости HRC 55…60. Размеры круглого эксцентрика необходимо применять с учетом ГОСТ 9061-68 и ГОСТ 12189-66. Стандартные круговые эксцентрики имеют размеры D= 32-80 мм и е = 1,7 – 3,5 мм . К недостаткам круговых эксцентриков следует отнести небольшой линейный ход, непостоянство угла подъема, а, следовательно, и зажимного усилия при закреплении заготовок с большими колебаниями размеров в направлении зажима.

На рисунке 5.21 показан нормализованный эксцентриковый прихват для зажима деталей . Обрабатываемая деталь 3 установлена на неподвижных опорах 2 и прижимается к ним планкой 4. При зажиме детали к рукоятке эксцентрика 6 прикладывается усилие W ,и он проворачивается относительно своей оси, опираясь на пяту 7. Возникающая при этом на оси эксцентрика сила Р передается через планку 4 к детали.

Рисунок 5.21 – Нормализованный эксцентриковый прихват

В зависимости от размеров планки (l 1 и l 2 ) получим зажимное усилие Q . Планка 4 прижимается к головке 5 винта 1 пружиной. Эксцентрик 6 с планкой 4 после разжима детали перемещается вправо.

Криволинейные кулачки , в отличие от круговых эксцентриков, ха­рактеризуются постоянством угла подъёма, что обеспечивает одинаковые самотормо­зящие свойства при любом угле поворота кулачка .

Рабочая поверхность таких кулачков выполняется в виде ло­гарифмической или архимедовой спирали.

При рабочем профиле в виде логарифмической спирали радиус-вектор кулачка ( р ) определяется зависимостью

р = Се а G

где С- постоянная величина; е - основание натуральных логарифмов; а - коэффициент пропорциональности; G - полярный угол.

Если используется профиль, выполненный по архимедовой спирали, то

р=аG .

Если первое уравнение представить в логарифмическом виде, то оно, как и второе уравнение, в декартовых координатах будет представлять прямую линию . Поэтому построение кулачков с рабочими поверхностями в виде логарифмической или Архимедовой спирали можно выполнить с достаточной точностью просто, если значения р, взятые по графику в де­картовых координатах, отложить от центра окружности в полярных коор­динатах. При этом диаметр окружности подбирают в зависимости от тре­бующейся величины хода эксцентрика (h ) (Рис. 5.22).

Рисунок 5.22 – Профиль криволинейного кулачка

Эти эксцентрики изготавливают из сталей 35 и 45. Наружные рабочие поверхности подвергают термообработке до твердости HRC 55…60. Основные размеры криволинейных эксцентриков нормализованы.

Эксцентриковые зажимы,в противоположность винтовым, являются быстродействующими. Достаточно повернуть рукоятку такого зажима менее чем на 180°, чтобы закрепить заготовку.

Схема действия эксцентрикового зажима показана на рисунке 7. При повороте рукоятки радиус поворота эксцентрика увеличивается, зазор между ним и деталью (либо рычагом) уменьшается до нуля; зажим заготовки производится за счет дальнейшего «уплотнения» системы: эксцентрик - деталь - приспособление.

Рисунок 7- Схема действия эксцентрикового зажима

Для определения основных размеров эксцентрика следует знать величину усилия зажима заготовки Q , оптимальный угол поворота рукоятки для зажима заготовки ρ, допуск на толщину закрепляемой заготовки δ.

Если угол поворота рычага неограничен (360°), то величину эксцентриситета кулачка можно определить по уравнению

где S 1 -установочный зазор под эксцентриком, мм;

S 2 -запас хода эксцентрика, учитывающий его износ, мм;

Допуск на толщину заготовки, мм;

Q – усилие зажима заготовки, Н;

L - жесткость зажимного устройства, Н/мм (характери­зует величину отжима системы под воздействием за­жимных сил).

Если угол поворота рычага ограничен (менее 180°), то вели­чину эксцентриситета можно определить по уравнению

Радиус наружной поверхности эксцентрика определяется из условия самоторможения: угол подъема эксцентрика , состав­ленный зажимаемой поверхностью и нормалью к радиусу его вращения, всегда должен быть меньше угла трения, т. е.

(f =0,15 для стали),

где D и R -соответственно диаметр и радиус эксцентрика.

Усилие зажима заготовки можно определить по формуле

где Р - усилие на рукоятке эксцентрика, Н (принимается обычно ~ 150 Н);

l - длина рукоятки, мм;

–углы трения между эксцентриком и деталью, меж­ду цапфой и опорой эксцентрика;

R 0 - радиус вращения эксцентрика, мм.

Для приближенного расчета усилия зажима можно восполь­зоваться эмпирической формулой Q12 Р (при t=(4-5) R и Р=150 Н).

а, в - для поджатая плоских заготовок; б - для крепления плоских заготовок с помощью качающегося коромысла; г - для стягивания обечаек с помощью гибкого хомута

Рисунок 8 - Примеры различных по конструкции эксцентриковых зажимов

Задача № 3 “Расчет парметров эксцентрикового зажима ”

По вводным данным тьютора подберите и рассчитайте параметры эксцентрикового зажима (рисунок 7), если изделие необходимо прижать с усилием Q , жесткость зажимного устройства L , угол поворота рычага неограничен, установочный зазор под эксцентриком S 1 , запас хода эксцентрика, учитывающий его износ S 2 , допуск на толщину заготовки ,сварщик правша.

    Рассчитайте диаметр эксцентрика.

    Определите длину рукоятки эксцентрика l .

    Составьте эскиз зажима. Подберите материал, из которого должен быть изготовлен зажим.

Таблица 4 – Варианты задачи

Q , кН

L , Н/мм

S 1 , мм

S 2 , мм

При больших программах выпуска изделий широко применяют быстродействующие зажимы. Одним из видов таких ручных зажимов являются эксцентриковые, в которых поворотом эксцентриков создаются усилия зажима.

Значительные усилия при малой площади касания рабочей поверхности эксцентрика могут вызвать повреждение поверхности детали. Поэтому обычно эксцентрик действует на деталь через подкладку, толкатели, рычаги или тяги.

Зажимные эксцентрики могут быть с различным профилем рабочей поверхности: в виде окружности (круглые эксцентрики) и со спиральным профилем (в виде логарифмической или архимедовой спирали).

Круглый эксцентрик представляет собой цилиндр (валик или кулачок), ось которого расположена эксцентрично по отношению к оси вращения (фиг. 176, а, бив). Такие эксцентрики наиболее просты в изготовлении. Для поворота эксцентрика служит рукоятка. Эксцентриковые зажимы выполняют часто в виде кривошипных валиков с одной или двумя опорами.

Эксцентриковые зажимы всегда ручные, поэтому основным условием правильной работы их является сохранение углового положения эксцентрика после его поворота для зажатия - «самоторможение эксцентрика». Это свойство эксцентрика определяется отношением диаметра О цилиндрической рабочей поверхности к эксцентриситету е. Это отношение называется характеристикой эксцентрика. При определенном отношении – условие самоторможения эксцентрика выполняется.

Обычно диаметром Б круглого эксцентрика задаются из конструктивных соображений, а эксцентриситет е рассчитывают исходя из условий самоторможения.

Линия симметрии эксцентрика делит его на две части. Можно представить себе два клина, одним из которых при повороте эксцентрика закрепляется деталь. Положение эксцентрика при его контакте с поверхностью детали минимального размера.

Обычно положение участка профиля эксцентрика, который участвует в работе, выбирают так. чтобы при горизонтальном положении линий 0\02 эксцентрик касался бы точкой с2 зажимаемой летали средних размеров. При зажиме деталей с максимальными и минимальными размерами детали будут касаться соответственно точек сI и с3 эксцентрика, симметрично расположенных относительно точки с2. Тогда активным профилем эксцентрика будет дуга С1С3. При этом часть эксцентрика, ограниченную на фигуре штриховой линией, можно удалить (при этом ручку надо переставить в другое место).

Угол а между зажимаемой поверхностью и нормалью к радиусу вращения называют углом подъема. Он различен при разных угловых положениях эксцентрика. Из развертки видно, что при касании детали и эксцентрика точками а и Б угол а равен нулю. Его величина наибольшая при касании эксцентрика точкой с2. При малых углах клиньев возможно заедание, при больших - самопроизвольное ослабление. Поэтому зажим при касании с деталью точек эксцентрика а и б нежелателен. Для спокойного и надежного закрепления детали необходимо, чтобы эксцентрик соприкасался на участке С\С3 с деталью, когда угол а не бывает равен нулю и не может колебаться в широких пределах.

Простой в изготовлении, обладающий большим коэффициентом усиления, достаточно компактный эксцентриковый зажим, являющийся разновидностью кулачковых механизмов, обладает еще одним, несомненно, главным своим преимуществом...

...– мгновенным быстродействием. Если для того, чтобы «включить – выключить» винтовой зажим часто необходимо сделать минимум пару оборотов в одну сторону, а затем в другую, то при использовании эксцентрикового зажима достаточно повернуть рукоятку всего на четверть оборота. Конечно, по усилию зажима и величине рабочего хода превосходят эксцентриковые, но при постоянной толщине закрепляемых деталей в серийном производстве применение эксцентриков чрезвычайно удобно и эффективно. Широкое использование эксцентриковых зажимов, например, в стапелях для сборки и сварки малогабаритных металлоконструкций и элементов нестандартного оборудования существенно повышает производительность труда.

Рабочую поверхность кулачка чаще всего выполняют в виде цилиндра с окружностью или спиралью Архимеда в основании. Далее в статье речь пойдет о более распространенном и более технологичном в изготовлении круглом эксцентриковом зажиме.

Размеры кулачков эксцентриковых круглых для станочных приспособлений стандартизованы в ГОСТ 9061-68*. Эксцентриситет круглых кулачков в этом документе задан равным 1/20 от наружного диаметра для обеспечения условия самоторможения во всем рабочем диапазоне углов поворота при коэффициенте трения 0,1 и более.

На рисунке ниже изображена геометрическая схема механизма зажима. К опорной поверхности прижимается фиксируемая деталь в результате поворота за рукоятку эксцентрика против часовой стрелки вокруг жестко закрепленной относительно опоры оси.

Показанное положение механизма характеризуется максимально возможным углом α , при этом прямая, проходящая через ось вращения и центр окружности эксцентрика перпендикулярна прямой, проведенной через точку контакта детали с кулачком и точку центра наружной окружности.

Если повернуть кулачок на 90˚ по часовой стрелке относительно изображенного на схеме положения, то между деталью и рабочей поверхностью эксцентрика образуется зазор равный по величине эксцентриситету e . Этот зазор необходим для свободной установки и снятия детали.

Программа в MS Excel:

В примере, показанном на скриншоте, по заданным размерам эксцентрика и силе, приложенной к рукоятке, определяется монтажный размер от оси вращения кулачка до опорной поверхности с учетом толщины детали, проверяется условие самоторможения, вычисляются усилие зажима и коэффициент передачи силы.

Значение коэффициента трения «деталь — эксцентрик» соответствует случаю «сталь по стали без смазки». Величина коэффициента трения «ось — эксцентрик» выбрана для варианта «сталь по стали со смазкой». Уменьшение трения в обоих местах повышает силовую эффективность механизма, но уменьшение трения в области контакта детали и кулачка ведет к исчезновению самоторможения.

Алгоритм:

9. φ 1 =arctg (f 1 )

10. φ 2 =arctg (f 2 )

11. α =arctg (2*e /D )

12. R =D/ (2*cos (α ))

13. A =s +R *cos (α )

14. e R *f 1 + (d /2) * f 2

Если условие выполняется – самоторможение обеспечивается.

15. F = P * L * cos (α )/(R * tg (α +φ 1 )+(d /2)* tg (φ 2 ))

1 6 . k = F /P

Заключение.

Выбранное для расчетов и изображенное на схеме положение эксцентрикового зажима является самым «невыгодным» с точки зрения самоторможения и выигрыша в силе. Но выбор такой не случаен. Если в таком рабочем положении рассчитанные силовые и геометрические параметры удовлетворяют разработчика, то в любых иных положениях эксцентриковый зажим будет обладать еще большим коэффициентом передачи силы и лучшими условиями самоторможения.

Уход при проектировании от рассмотренного положения в сторону уменьшения размера A при сохранении без изменений прочих размеров приведет к уменьшению зазора для установки детали.

Увеличение размера A может создать ситуацию при износе в процессе эксплуатации эксцентрика и значительных колебаниях толщины s , когда зажать деталь окажется просто невозможно.

В статье умышленно ничего не упоминалось до сих пор о материалах, из которых можно изготовить кулачки. ГОСТ 9061-68 рекомендует для повышения долговечности использовать износостойкую поверхностно-цементированную сталь 20Х. Но на практике эксцентриковый зажим выполняют из самых разнообразных материалов в зависимости от назначения, условий эксплуатации и располагаемых технологических возможностей. Представленный выше расчет в Excel позволяет определять параметры зажимов для кулачков из любых материалов, только нужно не забывать изменять в исходных данных значения коэффициентов трения.

Если статья оказалась Вам полезной, а расчет нужным, Вы можете оказать поддержку развитию блога, сделав перевод небольшой суммы на любой (в зависимости от валюты) из указанных кошельков WebMoney: R377458087550, E254476446136, Z246356405801.

Уважающих труд автора прошу скачивать файл с расчетной программой после подписки на анонсы статей в окне, размещенном в конце статьи или в окне наверху страницы!