Что такое функция митохондрий. Физическая выносливость человека и наличие митохондрий

На вопрос Митохондрии (пишу сообщение...) заданный автором шеврон лучший ответ это Они перерабатывают аденазинтрифосфорную кислоту в энергию посредством окисления. Ангел ночи
Оракул
(62813)
Для того чтоб переработать её в энергию для организма.

Ответ от Проституция [гуру]
митохондрии еще называют энергетическими станциями клетки - то есть они создают энергию и накапливают ее. когда клетка собирается делиться, то количество митохондрий увеличивается. считается, что они произошли от организмов-симбионтов


Ответ от Елена Закамская [гуру]
Митохондрии - это клеточные органеллы которые имеют двойную мембрану. Наружная гладкая, внутренняя образует складки - кристы. В митохондриях происходит аэробное дыхание, т. е. расщепление органических молекул в присутствии кислорода до углекислого газа и воды. При этом высвобождается энергия, которая запасается в высокоэнергетических связях молекулы аденозинтрифосфорной кислоты (АТФ) и затем эта энергия расходуется организмом по мере надобности. Число митохондрий зависит от потребности клетки в энергии, чем больше потребность, тем больше митохондрий в клетке и тем более они развиты. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях. Так, в скелетных мышцах митохондрии находятся вблизи миофибрилл. В сперматозоидах митохондрии образуют спиральный футляр вокруг оси жгутика; вероятно, это связано с необходимостью использования АТФ для движения хвоста сперматозоида. Аналогичным образом у простейших и в других клетках, снабженных ресничками, митохондрии локализуются непосредственно под клеточной мембраной у основания ресничек, для работы которых необходим АТФ. В аксонах нервных клеток митохондрии располагаются около синапсов, где происходит процесс передачи нервного импульса.
Без митохондрий клетка не могла бы существовать, т. к большая часть реакций синтеза веществ требует затрат энергии. Транспорт некоторых соединений тоже требует энергию. А эта энергия как раз и и образуется в митохондриях.
Внутри митохондрий содержатся РНК, белки и митохондриальная ДНК, участвующая в синтезе митохондрий наряду с ядерной ДНК. Причем митохондриальная ДНК более устойчива, чем ядерная и часто используется генетиками при установлении родственных связей, так как передается по материнской линии. В частности именно митохондриальная ДНК использовалась для анализа останов семьи Николая II.
И по митохондриальной ДНК устанавливают эволюцию человека.
И вообще - митохондрии это целый огромный мир.
Возможно, митохондрии некогда были свободнодвижущимися бактериями, которые, случайно проникнув в клетку, вступили с хозяином в симбиоз.


Ответ от электросон [гуру]
МИТОХОНДРИИ это органоиды эукариотической клетки (у прокариот отсутствуют) , основной функцией которых является синтез аденозинтрифосфорной кислоты (АТФ) за счет энергии, выделяющейся в ходе кислородного окисления органических веществ. Расположены в цитоплазме, от которой отделены двумя мембранами  наружной и внутренней; внутренняя имеет впячивания. На мембранах М. располагаются ферменты, участвующие в осуществлении дыхания клеток. Внутренняя полость М. заполнена полужидким веществом, в котором находятся растворимые ферменты, рибосомы и нуклеиновые кислоты. Считается, что М. произошли от аэробных бактерий, поглощеннных клетками-хозяевами на одном из ранних этапов эволюции эукариотической клетки, но, постепенно, упростились и утратили способность к самостоятельному существованию. Собственные рибосомы и собственная ДНК митохондрий свидетельствуют в пользу выдвинутого предположения.
Аналогично, хлоропласты считаются потомками водорослей, когда-то живших самостоятельно. Будучи проглочены более крупными клетками, они не были переварены, а остались жить в цитоплазме хозяина, где постепенно упростились до уровня внутриклеточных пластид, которые, как и митохондрии содержат собственные рибосомы и ДНК, но не могут жить самостоятельно!
Иногда задают вопрос о том, почему проглоченные бактерии и водоросли не были переварены. Одной из причин мог быть дефект ферментативной системы хозяина. Т. е. его ферменты отличались слабой гидролитической активностью. Как и всякий дефект, он встречался не у всех клеток, а только у некоторых из них. Захват активно дышащей бактерии или же водоросли для такой дефектной клетки был бы спасением. Действительно, не можешь как следует переваривать собственную пищу - пользуйся тем, что тебе даст поглощенная клетка, а именно её АТФ, её крахмал и т. п. и т. д.

Полисомы. Синтез цитоплазматических белков

Рибосомы представляют собой мельчайшие органеллы, присутствующие в цитоплазме клетки. Несмотря на свои размеры, они являются сложными молекулярными ансамб­леями, состоящими из рибосомальной РНК (р-РНК) различной длины и рибосомальных белков . В цитоплазме рибосомы встречаются в виде 2-х форм:

1. В диссоциированном состоянии (две субъединицы: малая и большая), которое свидетельствует об их неактивном статусе;

2. В ассоциированном виде – это форма их активного статуса.

Большая субъединица образуется тремя молекулами РНК, имеет форму полушара с 3 выступами, взаимодействующие с «шипиками» малой субъединицы.

Малая субъединица содержит лишь одну молекулу РНК и выглядит в виде «шапочки» с шипиками, обращёнными в сторону большой субъединицы. Ассоциация субъединиц рибосомы – это взаимодействие рельефов их поверхностей.

Функции субъединиц:

1. Малая ответственна за связывание с матричной РНК;

2. Большая – за образование полипептидной цепи.

Полисомы – это группа рибосом (от 5 до 30) связанных нитью м-РНК с образованием функционального комплекса. На нём происходит синтез цитоплазматических белков, необходимых клетке для роста, развития органелл дифференцировки.

Этапы синтеза цитоплазматических белков:

1. Выход из ядра м-РНК;

2. Сборка рибосом;

3. Образование функциональной полисомы;

4. Синтез сигнального пептида;

5. Считывание последовательности аминокислот в составе пептида сигнал-распознающей частицы (СРЧ);

6. Завершение синтеза цитоплазматического белка на полисоме. См рис. 1

Рис. 1: Схема синтеза цитоплазматических белков

II. Митохондрии (строение и функции)

Митохондрии – это система энергообеспечения клетки. На светооптическом уровне их выявляют при окраске по Альтману, они выглядят в виде зёрнышек и нитей. В цитоплазме они распределены диффузно, а в специализированных клетках сосредоточенны в участках, где имеется наибольшая потребность в энергии.

Электронномикроскопический уровень организации митохондрии : в ней выделяют две мембраны: наружную и внутреннюю. См. рис. 2

Рис. 2: Схема строения митохондрии

Наружная мембрана – это мешок с относительно ровной поверхностью, она по химическому составу и свойствам близка к плазмолемме, отличается она более высокой проницаемостью и содержит ферменты метаболизма жирных кислот, фосфолипидов и липидов.

Функция:

1. Отграничение митохондрии в гиалоплазме;

2. Транспорт в митохондрию субстратов для клеточного дыхания.

Внутренняя мембрана – неровная, она формирует кристы в виде пластин (ламеллярные кристы) с увеличением площади её поверхности. Главным компонентом этой мембраны являются молекулы белков, относящиеся к ферментам дыхательной цепи, цитохромы.

На поверхности крист в некоторых клетках описывают грибовидные частицы (F 1 -частицы), в которых различают головку (9 нм) и ножку (3 нм). Считают, что именно здесь происходит синтез АТФ и АДФ.

Между наружной и внутренней мембранами образуется небольшое (около 15 – 20 нм) пространство, которое называют наружной камерой митохондрий. Внутренняя камера ограничена соответственно внутренней митохондриальной мембраной и содержит матрикс.

Матрикс митохондрий имеет гелеобразную фазу и отличается высоким содержанием белка. В нём встречаются митохондриальные гранулы – частицы диаметром 20 – 50 нм высокой электронной плотности, они содержат ионы Са 2+ и Mg 2+ . Матрикс митохондрий содержит также митохондриальные ДНК и рибосомы. На первых происходит синтез транспортных белков митохондриальных мембран и некоторых белков, участвующих в фосфолировании АДФ. ДНК здесь состоит из 37 генов и не содержит некодирующие последовательность нуклеотидов.

Функции митохондрий:

1. Обеспечение клетки энергией в виде АТФ;

2. Участие в синтезе стероидных гормонов;

3. Участие в синтезе нуклеиновых кислот;

4. Депонирование кальция.

Строение и функции ядра растительной клетки.

Ядро – обязательная часть эукариотической клетки. Это место хранения и воспроизведения наследственной информации. Ядро также служит центром управления обменом веществ и почти всех процессов, происходящих в клетке. Чаще всего в клетках имеется лишь одно ядро, редко - два или несколько. Форма его чаще все­го шаровидная или эллипсоидаль­ная. В молодых, особенно меристематических, клетках оно занимает центральное положение, но позднее обычно смещается к оболочке, от­тесняемое растущей вакуолью. Снаружи ядро покрыто двойной мембраной – ядерной оболочкой, пронизанной порами (поры ядра - динамичные образования, они могут открываться и закрываться; таким путем может осуществляться регуляция обмена между ядром и цитоплазмой) на краях которых наружная мембрана переходит во внутреннюю. Наружная ядерная мембрана соединяется с мембранными каналами ЭПС. На ней располагаются рибосомы. Внутренняя мембрана может давать впячивания.

Внутреннее содержимое ядра – кариоплазма с погруженными в нее хроматином и ядрышками, и рибосомами. Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками). Она содержит ионы, нуклеотиды, ферменты.

Хроматин – это деспирализованная форма существования хромосом. В деспирализованном состоянии хроматин находится в ядре неделящейся клетке. Хроматин и хромосомы взаимно переходят друг в друга. По химической организации как хроматин, так и хромосомы не отличаются. Химическую основу составляет дезоксирибонуклеопротеин – комплекс ДНК с белками. С помощью белков происходит многоуровневая упаковка молекул ДНК, при этом хроматин приобретает компактную форму.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК. Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках. В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах).

Ядро – обязательная часть эукариотической клетки. Диаметр ядра колеблется от 5 до 20 мкм. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки. (в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.).

Химический состав ядра представлен, главным образом, нуклеиновыми кислотами и белками.

Строение и функции митохондрий.

Митохондрии или хондриосомы - «силовые» станции клетки, в них локализована большая часть реакций дыхания (аэробная фаза). В митохондриях происходит аккумуляция энергии дыхания в аденозинтрифосфате (АТФ). Энергия, запасаемая в АТФ, служит основным источником для физиологической деятельности клетки. Митохондрии обычно имеют удлиненную палочковидную форму длиной 4-7 мкм и диаметром 0,5-2 мкм. Число митохондрий в клетке может быть различным от 500 до 1000 и зависит от роли данного органа в процессах энергетического обмена.

Химический состав митохондрий несколько колеблется. В основном это белково-липидные органеллы. Содержание белка в них составляет 60-65%, причем структурные и ферментативные белки содержатся примерно в равной пропорции, а также около 30% липидов. Очень важно, что митохондрии содержат нуклеиновые кислоты: РНК - 1 % и ДНК -0,5%. В митохондриях имеется не только ДНК, но и вся система синтеза белка, в том числе рибосомы.

Митохондрии окружены двойной мембраной. Толщина мембран составляет 6-10 нм. Мембраны митохондрий на 70% состоят из белка. Фосфолипиды мембран представлены фосфатидтилхолином, фосфатидилэтаноламином, а также специфическими фосфолипидами, например, кардиолипином. Мембраны митохондрий не пропускают Н+ и служат барьером для их транспорта.

Между мембранами находится заполненное жидкостью перимитохондриальное пространство. Внутреннее пространство митохондрий заполняет матрикс в виде студнеобразной полужидкой массы. В матриксе сосредоточены ферменты цикла Кребса. Внутренняя мембрана дает выросты - кристы в виде пластин и трубочек, они разделяют внутреннее пространство митохондрий на отдельные отсеки. Во внутренней мембране локализована дыхательная цепь (цепь переноса электронов).

Теория и методика подтягиваний (части 1-3) Кожуркин А. Н.

7.3.3 Увеличение количества митохондрий в быстрых мышечных волокнах

7.3.3 Увеличение количества митохондрий в быстрых мышечных волокнах

Хотя под воздействием силовой тренировки можно добиться очень высокой площади поперечного сечения быстрых мышечных волокон, однако в циклических видах спорта гипертрофия быстрых волокон важна только как условие высокой мощности и ёмкости аэробных процессов энергообеспечения . Это означает, что увеличение силовых способностей при подтягивании не является конечной целью – это всего лишь средство для последующего наращивания аэробных возможностей мышц. Поэтому мы сейчас будем говорить о повышении окислительного потенциала быстрых мышечных волокон за счёт увеличения объёма и числа митоходрий.

Увеличение числа и объёма митохондрий сопровождается изменением соотношения активности различных ферментов, выражающемся в повышении эффективности окислительного метаболизма. Оба эти явления – гипертрофия и гиперплазия митохондрий и изменение состава ферментативных систем приводят к увеличению окислительного потенциала как медленных так и быстрых мышечных волокон на 100-200% .

Изменение активности ключевых ферментов под воздействием соответствующей тренировки изменяет метаболический профиль мышечного волокна (определяемый по соотношению кислительных и гликолитических ферментов), что даёт основание говорить о превращении быстрых гликолитических волокон в быстрые окислительно-гликолитические.

При увеличении массы митохондрий повышается кислородный запрос мышц. В связи с тем, что содержание кислорода в единице объёма крови находится в жёстких пределах, единственной возможностью увеличения количества кислорода, доставляемого к работающим мышцам, является усиление их кровообращения . Хроническая недостаточность в снабжении мышечной ткани кислородом может вызвать специфическое приспособление сосудистой системы, которое проявляется в увеличении числа кровеносных сосудов, особенно капиллярной сети .

Повышение окислительной способности быстрых мышечных волокон приводит к снижению уровня лактата в мышечной ткани. Дело в том, что накопление лактата и ионов водорода в мышечной ткани является разницей между скоростью их продукции, обусловленной массой и степенью активизации ключевых ферментов гликолиза и скоростью удаления, определяемой скоростью потребления пирувата митохондриями, скоростью удаления из мышечной клетки и степенью буферизации . Высокая капилляризация облегчает выход лактата в кровь, а повышенное количество митохондрий более активно использует лактат в качестве субстрата окисления, следовательно, два фактора уменьшения продукции лактата из трёх обусловлены аэробными способностями мышечных волокон (третий – степенью их гипертрофии).

Какие же упражнения ведут к увеличению массы митохондрий и повышению окислительного потенциала быстрых мышечных волокон?

По мнению Селуянова [цит. по ] при выполнении таких упражнений должны соблюдаться два простых условия: интенсивное функционирование митохондрий и относительно невысокая степень закисления цитозоля мышечных волокон, в которых митохондрии функционируют.

Для обеспечения рекрутирования быстрых окислительных мышечных волокон подтягивания нужно выполнять либо без отягощения, либо с небольшим отягощением, а для предотвращения чрезмерного закисления темп подтягиваний должен быть значительно ниже соревновательного.

1 Подтягивание со спрыгиванием.

Спортсмен выполняет одиночное подтягивание, затем разжимает ладони и спрыгивает с перекладины, после чего встряхивает руками (или оставляет их поднятыми вверх – что более сложно), а затем снова фиксирует хват и выполняет второе подтягивание, снова срыгивает с перекладины и так далее. Упражнение выполняется в темпе примерно 1 раз в 6 секунд в течение 5-10 минут, т.е. за время подхода производится от 50 до 100 подтягиваний.

В таком упражнении большая сила одиночного сокращения в фазе подъёма включает в работу быстрые волокна, а низкий темп выполнения упражнения даёт возможность образующейся молочной кислоте частично окислиться в медленных мышечных волокнах, а частично уйти в кровь и окислиться в миокарде и медленных мышечных волокнах менее активных скелетных мышц . Следовательно, упражнение может выполняться достаточно долго без выраженного закисления, что и подтверждается на практике.

Упражнение можно усложнить, постепенно переходя к выполнению сдвоенных, строенных и т.д. подтягиваний между спрыгиваниями, либо выполняя одиночные подтягивания с небольшим отягощением.

2 Подтягивание в сверхнизком темпе.

Выполняется подтягивание без отягощения в очень низком темпе (от 5 до 10 подтягиваний в минуту) но в течение длительного (более 2,5 минут) времени.

При этом существуют как минимум две разновидности упражнения. В первом случае используется обычный вариант хвата, и тогда это упражнение полностью совпадает с тем, которое описано в главе 6 в качестве упражнения для развития статической выносливости мышц-сгибателей пальцев. При этом параллельно с развитием статики будет происходить повышение окислительного потенциала быстрых окислительных волокон мышц, выполняющих подъём/опускание туловища.

Во втором случае для увеличения длительности подхода используется хват в облегчённых условиях. В качестве облегчения могут использоваться клеящие вещества, нанесённые на гриф, или какой-либо вариант тягового замка. Как пример можно привести петлю из прочного материала, подобно той, которую используют гимнасты (рисунок 7.9). Для предотвращения травм рекомендуется дополнительно наматывать на кисти рук мягкий (боксёрский) бинт (рис 7.9, поз.4) и выполнять подтягивания на перекладине, до грифа которой можно дотянуться, стоя на полу.

Рисунок 7.9 Простейший вариант тягового замка.

2, 3 – последовательность действий при фиксации хвата с помощью тягового замка

4 – тяговый замок в комбинации с боксёрской лентой (для предотвращения травм)

Постепенное увеличение темпа подтягиваний при отсутствии выраженного закисления динамически работающий мышц также будет способствовать увеличению окислительного потенциала быстрых мышечных волокон.

3 «Лесенки» и «пирамиды».

При использовании « лесенки» выполняется серия подходов таким образом, что количество подтягиваний в каждом последующем подходе увеличивается на некоторое число, в простейшем случае – на единицу, относительно первого подхода серии, число подтягиваний в котором может также может быть равно единице (обычно от 1 до 5). Таким образом, в случае « лесенки» серия подходов может выглядеть как 1, 2, 3, …N, где N – наибольшее количество подтягиваний, выполняемых в последнем подходе.

После каждого подхода спортсмен спрыгивает с перекладины и делает небольшую паузу отдыха, которая может увеличиваться от подхода к подходу вместе с ростом числа повторений в подходе.

Чем большее количество подтягиваний будет выполняться в подходе, тем в большей степени будут рекрутироваться более высокопороговые мышечные волокна, а ресинтез АТФ в мышцах всё больше будет смещаться в сторону анаэробного гликолиза.

Механизм аэробного окисления, функционирующий в паузах отдыха между подходами, постепенно увеличивает мощность энергопродукции, а когда все окислительные мышечные волокна (и быстрые и медленные) оказываются вовлечены в работу, выходит на свой максимальный уровень. Подключение к работе быстрых гликолитических волокон по мере нарастающего утомления приводит к тому, что, начиная с некоторого подхода (в зависимости от уровня тренированности спортсмена) количество производимого в мышцах лактата начинает превышать возможности организма по его утилизации, в связи с чем начинается закисление рабочих мышц.

Для спортсмена важно не пропустить этот момент и прервать серию – в случае использования « лесенки» , либо начать уменьшение количества подтягиваний в последующих подходах – при достижении пика « пирамиды» . Уменьшение количества подтягиваний в подходах на нисходящей части « пирамиды» не обязательно будет происходить с тем же шагом, что и на её восходящем участке. Шаг снижения нагрузки должен соответствовать скорости нарастания утомления и обеспечивать работу мышц в условиях относительно небольшого их закисления при интенсивном функционировании митохондрий, поскольку в противном случае будут развиваться не окислительные, а гликолитические возможности (в ущерб окислительным).

Из книги Думай! Бодибилдинг без стероидов! автора МакРоберт Стюарт

5. Тип и количество мышечных волокон Мышца человека состоит из волокон двух типов. Сколько в мышце волокон каждого типа, зависит от генетики конкретного человека. Одни волокна лучше приспособлены к наращиванию размера и силы, другие – выносливости. Если в ваших мышцах

Из книги Теория и методика подтягиваний (части 1-3) автора Кожуркин А. Н.

6.1.5 Развитие возможностей механизма аэробного окисления в работающих мышцах. 6.1.5.1 Увеличение числа мышечных волокон, способных к аэробному ресинтезу АТФ. Для того чтобы сделать уборку в своей квартире, нужно сначала обзавестись квартирой. Для того чтобы в мышечных

Из книги Минимум жира, максимум мышц! автора Лис Макс

6.1.5.2 Увеличение количества и размера митохондрий. Митохондрии - это небольшие (2-3 мкм в длину и 0,7-1,0 мкм в поперечнике) образования округлой или удлинённой формы (рисунок 6.1). Митохондрии располагаются цепочками вдоль сократительных элементов мышечных волокон –

Из книги Всестороннее руководство по развитию силы автора Хэтфилд Фредерик

7.2 Строение мышечных волокон и механизм мышечных сокращений Статическая сила, динамическая сила, статическая силовая выносливость, динамическая силовая выносливость… - физические качества, уровень развития которых определяет спортивный результат в

Из книги Секреты быстрого плавания для пловцов и триатлетов автора Таормина Шейла

7.3 Изменения в мышечных волокнах под влиянием различных тренировочных воздействий. В соответствии с теорией функциональных систем П.К.Анохина поведение любой системы (в том числе и двигательной системы спортсмена) подчинено получению определённого полезного

Из книги Совершенное тело за 4 часа автора Феррис Тимоти

7.3.2 Увеличение количества миофибрилл в быстрых мышечных волокнах Увеличение количества миофибрилл в быстрых мышечных волокон под воздействием физической нагрузки сопровождается увеличением площади поперечного сечения (гипертрофией) таких мышечного волокон,

Из книги автора

7.3.4 Параллельное увеличение количества митохондрий и миофибрилл в быстрых мышечных волокнах Одной из главных причин отказа от выполнения упражнения при подтягивании на перекладине является закисление рабочих мышц. Миофибриллярная гипертрофия быстрых мышечных

Из книги автора

7.3.5 Увеличение количества миофибрилл в медленных мышечных волокнах Из сравнения величин площади поперечного сечения медленных мышечных волокон, проведённым по данным гистохимических исследований следует, что гипертрофия ММВ у представителей циклических видов

Из книги автора

7.3.6 Увеличение количества митохондрий в медленных мышечных волокнах Задача повышения силовых или анаэробных способностей будет являться корректно поставленной только в том случае, если она является составной частью аэробной подготовки или по крайней мере не

Из книги автора

7.3.7 Схема изменений в мышечных волокнах под воздействием нагрузки. На рисунке 7.10 в условном виде изображены изменения, происходящие в мышечных волокнах разных типов под воздействием только что рассмотренных нами тренировочных нагрузок различной направленности.

Из книги автора

Из книги автора

Из книги автора

В тренировках на увеличение размеров мышц варьирование - ключ к достижению максимального увеличения мышечной массы. Используйте все приводимые методики, меняя их как во время подхода, так и между подходами. Для троеборцев увеличение размеров мышц за счет мышечной

Из книги автора

Из книги автора

Счастливые финалы и удвоение количества сперматозоидов Два канала, созданные богами и содержащие мужскую силу, находятся в твоих яичках… Я сокрушу их палицей. Атхарва-веда, священный индуистский текст – Каждый мужчина, присутствующий здесь, вполовину меньше мужчина,

Из книги автора

Сохранение правильной позы во время бега и уменьшение количества шагов Джо положил бечевку на расстоянии 0,9 м от моей ведущей ноги и велел выполнить следующие требования:1. В стойке на старте держать голову опущенной, но смотреть на бечевку, возле которой должна

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.